Stable isotope ecology and interspecific dietary overlap among dolphin species in the Northeast Atlantic

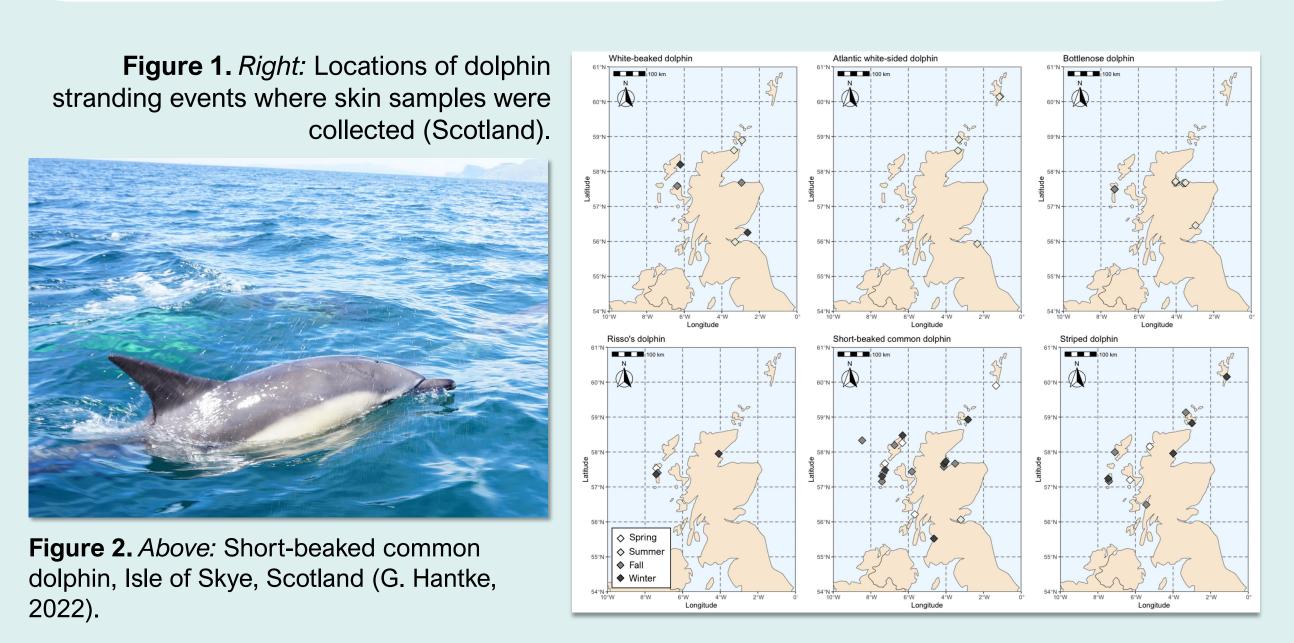
Tessa Plint¹, Mariel ten Doeschate², Andrew Brownlow², Nicholas J. Davison², Georg Hantke³, Andrew C. Kitchener^{3,4}, Fred J. Longstaffe⁵, Rona A. R. McGill⁶, Cornelia Simon-Nutbrown⁷, and Clayton R. Magill¹

¹The Lyell Centre, Heriot-Watt University, Edinburgh, EH14 4AS, UK
²Scottish Marine Animal Stranding Scheme, School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK

³Department of Natural Sciences, National Museums Scotland, Edinburgh, EH1 1JF, UK

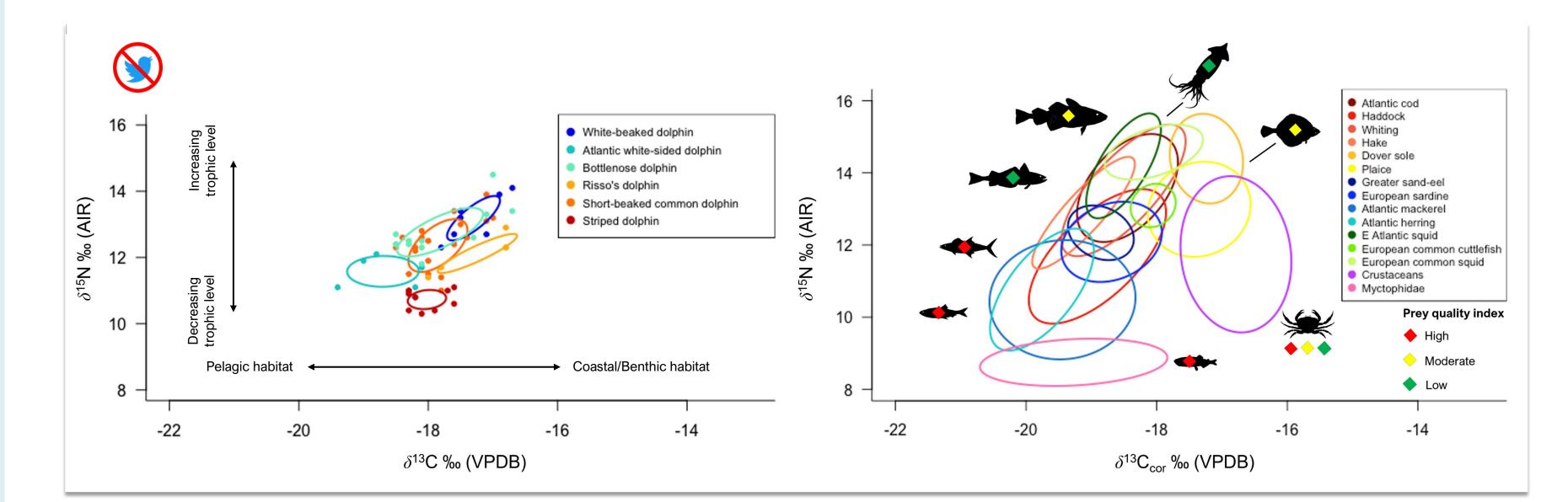
⁴School of Geosciences, University of Edinburgh, Drummond Street, Edinburgh, EH8 9XP, UK

⁵Department of Earth Sciences, The University of Western Ontario, London, Ontario, N6A 5B7, Canada


⁶National Environmental Isotope Facility, Scottish Universities Environmental Research Centre, East Kilbride, Glasgow, G75 0QF, UK ⁷Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5NZ, UK

BACKGROUND

- Ocean warming since the 1980s is changing the distribution of marine species:
 - Warm-water species can expand their range northward.
 - Cold-water species experience habitat compression.
- Cetacean sighting and stranding data from around the UK indicate that warm and cold-water adapted dolphin species are experiencing increased range overlap (particularly in northern regions like Scotland)^[1,2].
- Stable isotopes (δ^{13} C and δ^{15} N) are powerful proxies for determining diet in mobile marine mammals. Isotopically, "You are what/where you eat".


OBJECTIVE: Quantify isotopic/dietary niche overlap among warm and cold-water adapted dolphin species experiencing increasing range overlap in Scottish waters.

METHODS

- Dolphin skin samples collected from stranding events on Scottish coastlines (2015-2021).
- Warm-water dolphin species: Short-beaked common and striped dolphin
- Cold-water dolphin species: White-beaked and Atlantic white-sided dolphin
- Skin δ^{13} C and δ^{15} N used to determine core isotopic feeding niche for each dolphin species using SIBER (Stable Isotope Bayesian Ellipses in R).
- Dolphin isotopic niches compared with prey baseline and available stomach content records.

RESULTS & CONCLUSIONS

Figure 3. Left: Dolphin core isotopic feeding niche as represented by skin δ^{13} C and δ^{15} N. Right: Dolphin prey baseline (NE Atlantic prey muscle δ^{13} C and δ^{15} N, compiled from literature). Prey quality index determined by energy density (kJ/g⁻¹).

- Striped dolphin core isotopic niche displayed no interspecific overlap.
- SBCD core isotopic niche: 30% overlap with WBD; 7% overlap with AWSD.
- SBCD diet overlaps with WBD and AWSD (Gadiformes and high energy density pelagic schooling fish, respectively).
- These priority prey species are also a valuable component of the local and global fishing industry.
- Diet overlap with dolphin species experiencing northward range expansion should be considered when assessing potential stressors acting on Atlantic white-sided and white-beaked dolphin populations facing projected decline in available habitat.

REFERENCES & ACKNOWLEDGEMENTS

¹ Williamson, M.J., ten Doeschate, M.T.I., Deaville, R., Brownlow, A.C., and Taylor, N.L. (2021). Cetaceans as sentinels for informing climate change policy in British waters. Mar. Policy 131, 104634. doi.org/10.1016/j.marpol.2021.104634

² Evans, P.G.H., and Waggitt, J. (2020). Impacts of climate change on Marine Mammals, relevant to the coastal and marine environment around the UK. MCCIP Sci. Rev., 421-455. doi:10.14465/2020.arc19.mmm

The authors are grateful for the assistance of the SMASS volunteer team, Genyffer Troina, Kim Law, and Caillan Mitchell.

Funding from: Heriot-Watt University Scholarship for the School of Energy, Geoscience, Infrastructure & Society joint with the British Geological Society (TP), Marine Scotland (SMASS), NSERC Discovery Grant (FJL), Canada Research Chair (FJL), NERC (NEIF), and The Negaunee Foundation (NMS).

Contact information

Tessa Plint

PhD candidate, The Lyell Centre, Heriot-Watt University, Edinburgh, Scotland

