

C. Pons-Bordas

Anisakis spp. as biomarkers of residency of short-finned pilot whales, **Globicephala macrorhynchus in the Iberian Atlantic coast**

Claudia Pons-Bordas^{1*}, Rachel Vanessa Pool¹, Sofía Ten¹, José Ángel Armenteros Santos², Ana Balseiro^{3,4}, Manena Fayos^{5,6}, Carmen Abad Castiella⁷, Francisco Javier Aznar¹

¹Marine Zoology Unit, Science Park, University of Valencia, 46980 Valencia, Spain; ²General Directorate of the Natural Environment and Rural Planning, 33005 Asturias, Spain; ³Department of Animal Health, Faculty of Veterinary Medicine, University of León, 24071 León, Spain; ⁴ Department of Animal Health, Institute of Mountain Livestock (IGM-CSIC), 24346 León, Spain; ⁵ Cantabrian Wildlife Recovery Center, 39690 Cantabria, Spain; ⁶ Tragsatec, 39005 Santander, Spain; ⁷ Grampus association, Cantabria, Spain

*Author for correspondence: C. Pons-Bordas, E-mail: Claudia.Pons@uv.es

INTRODUCTION

- Short-finned pilot whales, Globicephala macrorhynchus (SFPWs), occur in tropical and subtropical waters worldwide (Fig. A).
- In the Atlantic Ocean, its northern limit has been established roughly at 32°N-40°N (Fig. A). • Sporadic records at higher latitudes (i.e., 43°N-53°N) [1-12] (Fig. B), specially in the last decades, have raised the question as to whether SFPWs could be just transient or indeed resident in those locations.
- Several factors **difficult** the **in-field assessment** of the matter:
 - Despite modest differences (Figs. C and D), SFPWs are morphologically similar to its sister taxon, the long-finned pilot whale, Globicephala melas (LFPW) (Fig. C): in areas where the distribution of both species overlaps, reliable identification is by no means easy.

Figure C. Full-body view of long-finned pilot whale, Globicephala melas (top) and

- SFPWs and LFPWs appear to hybridize regularly.
- Photo-ID of SFPWs have never been carried out at its geographical limits.

• Parasites have been largely used as markers to unveil movement patterns of cetaceans. Inferences are particularly robust when 'tag' parasites have:

- **Restricted latitudinal distribution** \rightarrow delimitation of host's stay areas.
- Known lifespan/population structure \rightarrow establishment of temporal limits of host's stays.

STUDY CASE AND CONTEXT

• On September 18th 2020, a pod of SFPWs stranded at atypical northern latitudes (43°28'27"N, 5°10'35"W) on the beach of Cala Morís, Asturias, Spanish Atlantic coast (Fig. B).

- Of 22 animals, 11 eventually died and 8 could be carried out to *ad hoc* facilities and **necropsied**.
- Large numbers of trophically-transmitted nematodes, provisionally identified as Anisakis spp., were found in the stomach.

MATERIAL AND METHODS

• In the North Atlantic, three Anisakis species have been reported to reproduce in delphinids, following a clear latitudinal gradient (Fig. E):

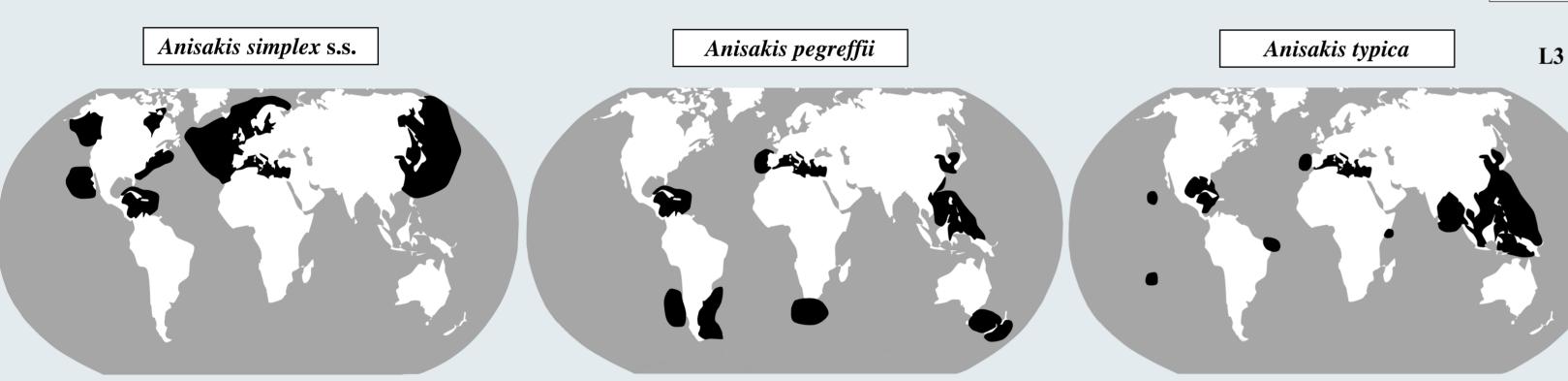


Figure E. Global distribution of Anisakis simplex s.s., A. pegreffii and A. typica in both the intermediate/paratenic and the final hosts [13 and ref. therein, 14-16]. © C. Pons-Bordas.

• Lifespan of Anisakis spp. has been estimated in most of its life stages (Fig. F).

• Each individual worm was classified into a life stage [17,18].

morphological criteria to potentially assign adult males to species:

all specimens (n = 995) to the lowest taxonomic level.

amplified following Pons-Bordas et al., 2020 [20].

• Based on morphological traits [13 and ref. therein, 17, 19], we carried out an identification of

• Five worms from each infected host were randomly collected, and mtDNA cox2 gene was

• The molecular analysis suggested that most (if not all) worms collected could belong to A.

simplex s.s. or A. pegreffii (see the Results). A. simplex s.s. and A. pegreffii show a non-

overlapping ratio between the length of left spicule (Fig. G) and total body length (i.e.,

LS/TBL) [13,21]. Assuming that only these species were present, we used this additional

• We firstly checked this diagnostic criterion using the sample of males identified to

• Then, we applied this criterion to 52 males in good state of preservation, from the

• The identity and population structure of the Anisakis spp. infecting the stranded SFPWs could shed light on the latitudes that the hosts had visited prior to death.

short-finned pilot whale, G. macrorhynchus (bottom). © C. Pons-Bordas.

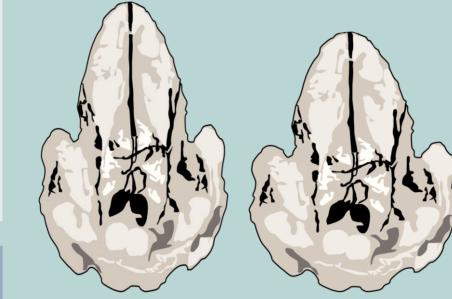


Figure D. Dorsal view of the skull of long-finned pilot whale, Globicephala melas (left) and short-finned pilot whale, G. macrorhynchus (right). © C. Pons-Bordas.

PARATENIC/TRANSPORT HOST

L3 Larvae

L3

Subadult

Adult

Figure A. Global distribution of short-finned pilot whales, Globicephala macrorhynchus (dark grey) and long-finned pilot whales, G. melas (light grey). Areas were the species overlap are shown in light brown. Dots indicate (from left to right) Azores, Madeira and the Straight of Gibraltar; the imaginary line between those locations represent the northern limit of short-finned pilot whales traditionally established in the Atlantic Ocean. © C. Pons-Bordas.

FINAL HOST

In the Atlantic Ocean, A. simplex and A. pegreffii coexist without A. typica in both the Norwegian Sea and the Iberian Atlantic coast. Morphological and molecular

Population structure and **sex-ratio** of *Anisakis simplex* **s.l.** (Tables A and B) **parallels** those of a **resident cetacean specie** (i.e., the harbour porpoise, *Phocoena phocoena*)

in the NE Atlantic, revealing a constant larvae recruitment and a consolidated adult population. Since most adult specimens were found naturally dead, and

considering that (1) molt to adult takes 43-71 days and (2) adult lifespan is estimated in 39.2 days [22,23,24], the Anisakis spp. here analysed were infecting the SFPWs

percentages of A. simplex (s.s.) and A. pegreffii of this study, mirror those reported in delphinids from the Iberian Atlantic coast [13 and ref. therein, 20, 22] (Fig. H).

L1

Figure B. Northernmost records of short-finned pilot whales, Globicephala macrorhynchus, in the Atlantic Ocean. [1] Monteiro et al., 2017; [2] González et al., 2000; [3] López et al., 2002; [4] This study; [5] Nores and Pérez, 1988; [6] Sabatier et al., 2014; [7] Van Canneyt et al., 2012; [8] Culik, 2010; [9] Duguy, 1968; [10] Duguy and Aloncle, 1974; [11] Alfonsi et al., 2013; [12] Kitchener et al., 2022. © C. Pons-Bordas.

- 300

RESULTS

Table A. Composition by development stage of the population of Anisakis simplex sensu lato (s.l.) from 6 short-finned pilot whales, Globicephala macrorhynchus, mass-stranded in Asturias, Northwest Spain (this study) and from 34 harbor porpoises, *Phocoena phocoena*, off Denmark [18]. X: mean; SD: standard deviation, N: number of individuals.

L1 Larvae (egg)	Host specie	G. Macrorhynchus (this study)			P. phocoena (Herreras et al., 2004)			
		Per host		Total sample	Per	Total sample		
/ L1	Life stage	x (SD)	% (SD)	N (%)	x (SD)	% (SD)	N (%)	
	L3	7.3 (9.1)	9.6 (12.7)	44 (4.5)	31.1 (97.9)	23.5 (3.4)	1057 (14.0)	
L^{\star}	L4	92.2 (124.7)	51.4 (17.3)	553 (56.9)	72.6 (161.5)	44.9 (4.8)	2467 (32.8)	
L2 Larvae	Larvae $(L3 + L4)$	163.5 (252.9)	76.7 (33.0)	597 (61.4)	103.7 (255.0)	68.5 (3.6)	3524 (46.8)	
	Subadult male	5.5 (3.9)	6.9 (8.6)	33 (3.4)	9.7 (23.6)	3.7 (6.5)	331 (4.4)	
	Subadult female	14.2 (11.6)	9.6 (6.6)	85 (8.7)	9.6 (20.7)	4.6 (2.6)	326 (4.3)	
HOST L2	Subadult (total)	19.7 (14.1)	16.5 (12.6)	118 (12.1)	19.3 (43.8)	8.3 (17.6)	657 (8.7)	
Figure F. Schematic	Adult male	19.7 (25.6)	8.9 (6.8)	118 (12.1)	47.1 (132.7)	10.5 (13.2)	1601 (21.3)	
representation of the life	Adult female	23.2 (23.3)	13.6 (14.8)	139 (14.3)	51.4 (156.2)	12.7 (19.9)	1747 (23.2)	
cycle of nematodes of genus	Adult (total)	42.8 (45.6)	22.5 (19.4)	257 (26.4)	98.5 (288.6)	23.2 (28.5)	3348 (44.5)	
Anisakis.	Sexable (total)	62.5 (68.3)	40.0 (23.5)	375 (38.6)	117.8 (329.8)	31.5 (33.6)	4005 (53.2)	

Table B. Sex ratio estimates of Anisakis simplex sensu lato (s.l.) from 6 short-finned pilot whales, Globicephala macrorhynchus, mass-stranded in Asturias, Northwest Spain (this study) and from 34 harbor porpoises, Phocoena phocoena, off Denmark [18] expressed as the proportion of males of the total population of each life stage: subadults, adults and sexables (subadults + adults). X: mean; SD: standard deviation.

FIRST INTERMEDIATE HOST

L3 ← L2

P. phocoena (Herreras et al., 2004) G. Macrorhynchus (this study) Host specie

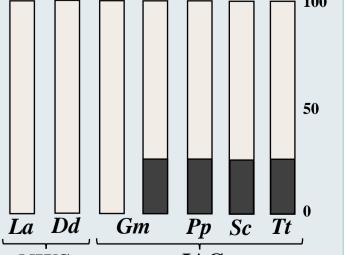
• Morphological identification discarded the presence of A. typica, from L4 to adult stages, in all

non-degraded worms (i.e., 972).

The amplification and sequencing of mtDNA cox2 gene from 30 worms revealed the presence of A. *simplex* s.s. (93.3%; n=28) and *A. pegreffii* (6.7%; n=2).

• Species assignation based on the ratio between the length of the left spicule and total body length (LS/TBL), matched molecular identification in the 14 sequenced males (12 A. simplex s.s. and 2 A.

	Life stage	Per host (x ± SD)	Total sample	Per host (x ± SD)	Total sample	pegreffii).
						1 8 3
Here, we provide (1) a morphological and molecular identification of a large sample of <i>Anisakis</i> spp. collected from the stranded SFPWs, and (2) a detailed account of	Subadult	0.400 ± 0.205	0.297	0.512 ± 0.230	0.504	• When the LS/T
their population structure. The data obtained are used to reconstruct the latitudinal movements and residence area of the pod before the stranding.	Adult	0.498 ± 0.194	0.553	0.470 ± 0.194	0.478	
then population structure. The data obtained are used to reconstruct the fattuanial movements and residence area of the pour before the stranding.	Sexables	0.493 ± 0.113	0.458	0.497 ± 0.191	0.482	were assigned to


S/TBL criterion was applied to the 52 males that had not been sequenced, 46 (88.5%) l to A. simplex s.s. and 6 (11.5%) to A. pegreffii.

DISCUSSION

• First worldwide report of A. pegreffi infecting SFPWs.

at least during three months prior to the stranding.

Anisakis simplex s.s. Anisakis pegreffii

IAC NWS elative proportions of n some final hosts from n Sea (NWS) and the coast (IAC). La: albirostris; Dd: ohis; Gm: Globicephala hocoena phocoena; Sc: uleoalba; Tt: Tursiops truncatus [13 and ref. therein, 20, 22].

• To our knowledge, we provided the first feasible evidence of the residence of SFPWs at latitudes above 43°N, at least with some continuity. However, we cannot ensure its	Figure H. Rela
permanent establishment in those waters: round-trips of 2000 km and 4.5 months of duration have been described in resident SFPWs from the Macaronesia region [25].	Anisakis spp. in s
	the Norwegian
• The possible ampliation of the geographical distribution of SFPWs could be mainly related to (1) atmospheric phenomena, such as the North Atlantic Oscillation	Iberian Atlantic
	Lagenorhynchus
(NAO), and (2) climate change, a phenomenon observed in other cetacean species globally, and expected to increase in the coming decades. The septentrional expansion of	Delphinus delphi
SFPWs may wider the area of co-occurrence with LFPWs, increasing the opportunities for interspecific hybridization between both species, particularly during the	melas; Pp: Phoe
	Stenella coerule

REFERENCES:

Supported by Project AICO 2021/022 of the Generalitat Valenciana, and in collaboration with:

remaining sample.

species by molecular methods.

mm. © Grabda, 1976.

Figure G. Left and right

spicules of an adult male of

Anisakis spp. Scale bar: 0.5

reproductive peaks in summer [26].

