MATCHING VISUAL AND ACOUSTIC DETECTIONS TO ESTIMATE DETECTION PROBABILITY FOR SMALL CETACEANS IN THE ACCOBAMS SURVEY INITIATIVE N°286

OLLIER Camille^{1,2}, SINN Ilona², BOISSEAU Oliver³, RIDOUX Vincent^{1,2} & VIRGILI Auriane^{1,2}

¹ Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS – La Rochelle Université, 5 Allées de l'Océan, 17000 La Rochelle France. ² Observatoire PELAGIS, UAR 3462 CNRS – La Rochelle Université, 5 Allées de l'Océan, 17000 La Rochelle France. ³ Marine Conservation Research (MCR), 94 High Street, Kelvedon, CO5 9AA, UK. **Contact: camille.ollier@univ-lr.fr**

Conservation management relies on information on abundance Difficult to study 🛩 due to detection biases Imperceptible by the **Do not surface** observer/hydrophone Do not vocalise ((•))

TERIALS & METHODS

HOW TO ESTIMATE DETECTION PROBABILITY p?

Line-transect distance sampling method allows to estimate detection probability p with g(0), the detection probability on the transect line, assumed to be 1. Due to detection biases, this assumption is violated. The g(0) has to be estimated.

Animals detected?

To estimate absolute abundance, the detection probability must be assessed accounting for detection biases -

With mark-recapture distance sampling method (MRDS)

((•))

VISUAL-ACOUSTIC DOUBLE PLATFROM Challenging to identify duplicates

ECTIVES

Develop a method to match visual and acoustic detections.

Estimate detection probability accounting for detection biases. 2

Double platform Visual/acoustic data collected simultaneously

2 visual observers - on field (•) **Towed hydrophones** - post-field analysis based on echolocation clicks

MRDS approach: Two platforms simultaneously sample an area and the number of recorded detections is compared to identify missed and duplicated detections.

This approach allows to estimate g(0) and therefore p can be estimated accounting for detection bias.

RESULTS

DECISION TREE RESULTS

Under Beaufort Sea State \leq 4

Under Beaufort Sea State \leq 4 & right truncation at 1500 m

Two independent

platforms

3

1500

Create a decision tree to match visual and acoustic detections as duplicates

Important to use double-platform in surveys to estimate detection probability to improve abundance estimates and conservation efforts

Acknowledgments: This research is part of a PhD project funded by the National Center for Scientific Research. We would like to thank ACCOBAMS and their technical and financial partners for making this survey possible.

