Jasmine Stavenow_{1,2}, Mark Jessopp_{1,2}, Ailbhe Kavanagh₃, Emer Rogan₁ **1** School of Biological, Earth and Environmental Sciences, University College Cork 2 MaREI, the SFI Research Centre for Energy, Climate and Marine, University College Cork 3 Marine Institute, Oranmore, Co. Galway, Ireland

LinkedIn

European Cetacean Society Conference 16-20 April 2023 | O Grove - Galicia - Spain

Can cost-effective

hydrophones be used for

cetacean monitoring?

Listening for Bottlenose dolphins (Tursiops truncatus) using HydroMoths Potential cost-effective alternatives for cetacean acoustic monitoring

There is a resident population of Bottlenose dolphins inhabiting the Shannon Estuary

Carrigaholt bay, 14 March 2023

Shannon Estuary, Ireland

FACT BOX: HYDROMOTH

WHAT IS IT: Newly developed Hydrophone COSTS: ~100€/UNIT SIZE: 4x7x5cm

There is still much to learn about them, and how they can be useful for cetacean monitoring

	Sampling rate			
Recording hours of the day	48kHz	96kHz	192kHz	256kHz
00-24			1	1
00-01, 02-03, 04-05, 06-07	2	2		2
08-09, 10-11, 12-13, 14–15	2	2		2
16-17, 18-19, 20-21, 22-23	2	2		2
Table 1. Matrix showing the number of HydroMoths used with their				
configurations in this study				
Tot: 20 units				

(10 distributed over 2 buoys)

Duty cycles for HydroMoths with Active recording periods: 15m sleep, 5m recording Recording 00-24: 12m sleep, 10m recording **Paired with**

Batteries: Lithium Iron Disulfide AA 1.5V Memory card: 64GB Micro SD Card

FACT BOX: NYQVIST-SHANNON SAMPLING THEOREM

THEORY STATES: Sampling rate must be equal to or greater than twice the highest frequency in the signal, to record it accurately.

RFI IMINARY RESULTS from our pilot study

All sound files have not yet been processed and analyzed, but so far What have we recorded? Dolphin whistle 🛞 Dolphin click 🛞 Echo sounder 🔗

How long time did they record? **3 days, 4 days to over 4 weeks**

The hydrophones recording 00-24, with 192kHz resp 250kHz sampling rate (Table 1), recorded 3 resp 4 days, and were both **limited by memory** card size. Hydrophones with active recording hours are still recording 14 April 2023.

Bottlenose dolphins produce high frequency sounds (whistles around 7kHz-16kHz) and clicks with peak frequencies around 40kHz-130kHz). Mysticetes produce low frequency sounds, ex Fin whales make 20Hz pulses, blue whales calls between 10Hz-40Hz. This means sampling rate will vary depending on the target species.

Higher sampling rate requires a lot of energy, which affects the recording time.

BUT: Do we really need to follow the Nyqvist-Shannon sampling theorem for monitoring purposes, if it is enough to collect presence/absence data?

Discussion point

Some HydroMoths are still recording after 4+ weeks, which is **promising for monitoring**

Several sampling rates recorded the echo sounders, indicating similar could be seen for dolphin clicks

SPECTROGRAMS - same sound, different samling rate

School of **Biological, Earth and Environmental Sciences**

